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ABSTRACT 

This paper d e s c r i b e s  t h e  work done by t h e  au thor  and 

o t h e r s  on d i g i t a l  computer programs f o r  automatic  enumeration 

of cosets. 

t h e  work done on t h e  f i n i t e  "Burnside" groups e s p e c i a l l y  by 

computer enumerations. A d e f i n i t i o n  f o r  t h e  Burnside group 

B of exponent 3 wi th  4 genera tors  involving only  35 words 

It i s  followed by a brief d e s c r i p t i o n  of s o m e  of 

3 , 4  

i s  g iven .  J 7 - W ~  
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CHAPTER I 

B A S I C  PROBLEM 

. 

If it is known t h a t  a group, G ,  is  genera ted  by a set  

of  gene ra to r s :  S1, S2,  ..., S and t h a t  t h e s e  g e n e r a t o r s  

s a t i s f y  a set of relations of t h e  form: 

k 

fi(Sl,S2, ..., Sk) = E, (i = 1, 2 ,  ..., n), (1 1 

-chen a nakura l  ques t ion  which a r i s e s  is: What i s  t h e  o r d e r  of 

xhe group t h u s  def ined?  An equ iva len t  way of express ing  t h i s  

q u e s t i o n  i s  t o  ask  how many of t h e  combinations and permuta- 

? ions of t h e  g e n e r a t o r s  a r e  d i s t i n c t  when sub jec t ed  t o  t h e  

c o n s t r a i n t s  implied by t h e  r e l a t i o n s ,  f i ,  and t h e  d e f i n i t i o n  

of an abstract group. For a l l  b u t  t h e  m o s t  t r i v i a l  of groups 

t h e  direct  approach c l e a r l y  involves  t o o  much manipulat ion 

t o  be practical. 

The m o s t  obvious technique t o  reduce t h e  magnitude of 

t h e  problem is t o  choose as l a r g e  a subgroup, H, of G a s  pos- 

sible -- t h e  o r d e r  of H b e i n g  known from t h e  set  of d e f i n i n g  

r e l a t i o n s  -- and enumerate a l l  of the l e f t  c o s e t s  of t h a t  
1 

subgroup. For example, suppose one wished t o  determine the 

The cho ice  of l e f t  or  r i g h t  cosets i s  immater ia l  t o  
the process .  The reason  for choosing l e f t  cosets is  explained 
i n  t h e  paragraph of Chapter 11. 

1 
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o r d e r  of the group, (8 ,712 ,3 )2 ,  def ined  by 

7 2 -1 3 A* = B = ( A B )  = (A B) = E 

he r e l a t i o n s :  

There a r e  s e v e r a l  choices for a subgroup. One may use  t h e  

group genera ted  by B, denoted , which is t h e  c y c l i c  group 

of order 7,  or (A), t h e  c y c l i c  group of order 8 .  

s t i l l  better choice  i s  K E C A  ,A- lB) .  

However, a 

2 2 -1 
A is  of per iod  4,  A B 

2 -1 is  of per iod  3, and t h e i r  product ,  A 'A 3 = AB, is of pe r iod  

2 .  These g e n e r a t o r s  s a t i s f y  t h e  r e l a t i o n s  ( 2 , 3 , 4 )  : 

( 3 )  
4 R2 = S 3  = (RS) = E 

c 

which d e f i n e  t h e  symmetric group on f o u r  e lements ,  S4, of or- 

der 24. 

Then RS = AB=B-'A = A . 
This is e a s i l y  seen by s e t t i n g  BolA = S and AB = R. 

2 The orde r  of ( 8 , 7 1 2 , 3 )  i s  known t o  

be 1 0 , 7 5 2 :  t h e r e f o r e ,  using t h e  subgroups s p e c i f i e d  only  

1536,1344, and 448 cosets would have t o  be enumerated respec- 

t i v e l y  according as t h e  b a s i c  subgroup is I.), {A) or K* 

It is  w e l l  known from elementary group theory  t h a t  d i s -  

t i n c t  cosets of t h e  subgroup, H, have empty i n t e r s e c t i o n s :  

t ha t  any g iven  coset, aH,  is independent of t h e  cho ice  of the 

'This group, which was f i r s t  described by D r .  A .  Sinkov: 
"On t h e  group-Defining Rela t ions  ( 2 , 3 , 7 : p ) "  Annals of Mathe- 
m a t i c s  ~ I I I  (1937), pp 580-582 and w a s  l a te r  g iven  an irre- 
d u c i b l e  d e f i n i t i o n ,  has  been widely used as a test  problem 

P for  computer enumeration problems and t h u s  for a comparison 
of t h e  v a r i o u s  techniques.  

r 
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representative, a, that is bEaH+aH = bH; and that the union 

of the collection of all cosets of H is the entire group, G: 

G = a Hua Hw...ua H 

where a E H  and a.Hna.H = d, i # j 
(4 1 1 2  m 

1 1 3  
Thus if in an enumeration of G by cosets of H, m cosets were 

defined, the order of G would be m times the order of H. 



CHAPTER I1 

SYSTEMATIC ENUMERATION 

I n  1936 Todll and Coxeted presented  a mechanical method 

f o r  accomplishipg this type of enumeration. 

involv ing  t h e  choice of cops ider ing  t h e  elements of t h e  group, 

G, as r i g h t  m u l f i p l i e r s ,  t h e  process  t o  be descr ibed  below 

is t h a t  of Toad and Coxeter. The cho ice  of r i g h t  m u l t i p l i e r s  

(left cosets) produces tables which are read  i n  t h e  convent iona l  

Except f o r  changeq 

manner. 

Consider a typ/oal member of t h e  set  of r e l a t i o n s  (1). 

It would have the fom: 

where each R i s  one of the g e n e r a t o r s  or t h e  

of t h e  generators and gene ra to r s  a r e  repea ted  

Such a re la t ion is c a l l e d  a word o f 1  letters. 

j. 

(5 )  

i n v e r s e  of one 

i f  necessary.  

For example, 

i f  t h e  commutator bf gene ra to r s  A and B w e r e  t o  have i t s  period 

s p e c i f i e d  as 2, ( 5 )  would have t h e  form: 

(6 1 -1 -1 -A -1 A B ABA B A B = E  

I n  the proceee about to  be described, t h e r e  i s  a coset 

m u l t i p l i c a e i a n  table for each word i n  the set  of d e f i n i n g  

3?. A .  Todd and 8. S, M, Coxeter ,  "A P r a c t i c a l  Method for 
Enumeriitjng Coqets of a F i n i t e  Abstract Group," 
of t h e  Gdinbursh Mathematical Soc ie tv ,  V, Series I1 (19361, 
pp. 26-34. 

Proceedinss  

-4- 
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r e l a t i o n s ,  (1)- Each t a b l e  h a s  one column more t h a n  t h e  

number of l e t t e r s  i n  t h e  corresponding word. The g e n e r a t o r s  

forming t h e  word are placed a t  t h e  head of t h e  table between 

t h e  v a r i o u s  columns a s  i n  t h e  fo l lowing  example: S4 def ined  

by t h e  r e l a t i o n s  ( 3 ) .  

F ig .  1 -- Diagram of t y p i c a l  enumeration table 

I n  F igure  1 t h e  numbers n l ,  

The e n t r i e s  are t o  be i n t e r p r e t e d  as n l - S  = n2 and n2-R = n3 

and, when r ead ing  backwards, as n3-R-l = n2  and n2-S = nl. 

The c o n s t r a i n t s  implied by t h e  d e f i n i n g  r e l a t i o n s  (1) are 

a p p l i e d  by r e q u i r i n g  t h e  c o s e t  numbers a t  bo th  ends of a row 

t o  be i d e n t i c a l .  

n2 ,  and n3 r e p r e s e n t  c o s e t s .  

-1 

The p rocess  i s  i n i t i a t e d  by i n s e r t i n g  i n  t h e  tables t h e  

choice  f o r  cose t  1, namely t h e  subgroup H. I n  t h e  example 

c i t e d  h o v e ,  a reasonable  choice  f o r  H i s  the subgroup gen- 

e r a t e d  by s, t h e  c y c l i c  group of o rde r  3 .  Hence we denote  

H = s = 1. I t  fo l lows  t h a t  1 - S  = 1 s i n c e  any element H i s  

of t h e  form S and S S i s  also of t h e  form S . Thus t h e  

above r e s u l t  i s  e n t e r e d  i n t o  t h e  t a b l e s  i n  every  p o s s i b l e  

p o s i t i o n  as follows: 
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Fig. 2 . - - I n i t i a l  s t a g e  of enumeration 

N o t e  t h a t  a t  each stage of t h e  process  every table should 

c o n t a i n  a r o w  t h a t  begins  and ends wi th  each of t h e  cosets 

a l r e a d y  def ined .  

i n  t h e  form 

However, i f  any of t h e  words may be pu t  

x 
(R1R2.. . R g )  = E (7) 

then  t h e r e  i s  a h-fold symmetry. 

w i th  A-1 of t h e  cosets w i l l  only r e s u l t  i n  r e p e t i t i o n  of t h e  

Repe t i t i on  of r o w s  beginning 

A-th row wi th  t h e  e n t r i e s  r o t a t e d  c y c l i c l y .  These r e p e t i t i o n s  

a r e  super f luous  and t h e r e f o r e  may be omit ted.  

A t  each s t a g e  i n  t h e  process when it  has been determined 

t h a t  no m o r e  information can be i n s e r t e d  i n  t h e  t a b l e s ,  t h e  

nex t  c o s e t  i s  def ined  t o  f i l l  an empty space i n  t h e  t a b l e s .  

I n  o u r  example such a d e f i n i t i o n  could be 1 - R  = 2 .  Then t h e  

t a b l e s  would be f i l l e d  i n  a s  fol lows:  

F ig .  3.--Second s t a g e  of enumeration 
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I n  Figure 3 it i s  deduced t h a t  2'R = 1. Algebra i ca l ly  t h i s  

deduct ion i s  a consequence of t h e  r e l a t i o n  R = E. Coset 2 

i s  of t h e  form S R. 

= 1. A s  t h e  process  cont inues,  more i n s t a n c e s  of deduced 

2 

U 2 a Thus 2-R i s  of t h e  form Sa-R = S E = Sa 

information w i l l  occur.  The advantage of t h i s  mechanical pro- 

cedure i s  t h a t  t h e  a lgeb ra i c  consequences of t h e  de f in ing  re- 

l a t i o n s  are handled au tomat ica l ly ,  t hus  e l imina t ing  t h e  

n e c e s s i t y  f o r  a b s t r a c t  manipulation. 

4 Also no te  t h a t  ( R S )  = E i s  a r e l a t i o n  of t h e  form ( 7 )  

as i n  f a c t  a r e  t h e  o t h e r  two. 

ending wi th  c o s e t  2 i s  superf luous and hence was omit ted i n  

F igure  3 .  

Therefore ,  a row beginning and 

The next  p a i r  of d e f i n i t i o n s  might be 2-S = 3 followed 

by 3 . S  = 4 from which it i s  deduced t h a t  4 - S  = 2. A t  t h i s  

p o i n t ,  t h e  tables appear a s  follows: 

N l  
4 4 

4 4 

Fig. 4.--Later s t a g e  of enumeration 

From t h i s  p o i n t  one might proceed a s  fol lows.  Define 3-R = 5 

t hus  deducing t h a t  5 - R  = 3. 

6 - R  = 4 and 5 - S  = 6. 

Then d e f i n e  4 - R  = 6 deducing t h a t  

A t  t h i s  p o i n t  t h e  t a b l e s  appear as fol lows:  
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4 6 4  

R S R S R S R  

Fig.  5 . - -S t i l l  l a t e r  s t a g e  of enumeration 

Note t h a t  t h e  s t a r r e d  c o s e t  numbers are i n  symmetrical posi-  

t i o n s  and hence only t w o  r o w s  need t o  be c a r r i e d  i n  t h e  c h a r t  

corresponding t o  t h e  r e l a t i o n  ( R S )  = E. 
4 

The nex t  p a i r  of d e f i n i t i o n s  might then be 6-S = 7 which 

l e a d s  t o  7 - S  = 5 and f i n a l l y  7.R = 8 from which t h e  r e s u l t s  

8 - R  = 7 and 8 - S  = 8 are e a s i l y  found. A t  t h i s  p o i n t  t h e  tables 

have "closed up" and the process  i s  complete. The r e s u l t i n g  

tables appear below: 

Fig.  6,--Completed enumeration 
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There were 8 cosets defined and since H is of order 3, 

the order of the group (2,3,4) is 24. The coset multipli- 

cation table may be summarized in the following diagram: 

Fig. 7.--Coset diagram for (2,3,4) 

Any path from 1 to n yields an expression for an element of 

coset n. For example, the element SRSRS R in coset 8 cor- 2 

responds to the path 1-1-2-4-6-5-7-8 on Figure 7. 

In the process, it may occur that two different coset 

numbers are discovered to actually represent the same coset. 

When such a coincidence occurs, the larger number is replaced 

throughout the tables by the smaller and the process continues. 

When working by hand it may be convenient to use the larger 

number as that of the next coset defined. 
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-- 

As an example of a simple enumeration which involves  

a coincidence cons ider  Kle in ' s  simple group of o rde r  168 

def ined  by t h e  r e l a t i o n s  (2 ,3 ,7 ;4 ) :  

(8 1 2 3 7 -1 -1 4 P = Q = (QP) = (0 P QP) = E 

-1 -1 L e t  PQ = R and Q = S. Then we  have P = W - Q  = RS and 

Q -1 P -1 QP = (PQ)- l  Q-PQ-Q-l = R -1 S -1 RS. Thus r e l a t i o n s  ( 8 )  

imply 

(9) 
-1 -1 4 R7 = S3 = (RS)* = (R S RS) = E 

W e  now d e f i n e  t h e  basic subgroup as R so t h a t  1-R = 1 

and proceed as ind ica t ed  i n  t h e  fol lowing table: 

I) 
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TABLE 1: 

Definition 

lO*S’1 = 11 

1l.R = 12 

4 - R  = 13 

13-R = 14 

11-R-l = 15 

9 - R  = 16 

14.S-1 = 17 

17-R = 18 

180s = 19 

19.R-l = 20 

20-s-1 = 21 

21.R = 22 

22-S = 23 

23.R-1 = 24 

DEFINITIONS FOR (2,3,7 ; 4) 

Implied Consequences 

30s = 1 2-R = 3 

5-R = 2 

129s = 4 

130s = 11 

14-R = 6 

9 . S  = 15 

16.S = 7 

16.R = 17 

50s = 12 12.R = 7 

100s = 13 

150s = 8 

6.S = 16 
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-1 R 

A t  t h i s  p o i n t  t h e  t a b l e s  appear a s  i n  f i g u r e  8: 

F ig .  8 -- (2,3,7;4) b e f o r e  t h e  f i r s t  coincidence 
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If t h e  nex t  d e f i n i t i o n  made is: 

(R S R S )  = E t h a t  25'R = 10 and then from (RS) = E 

t h a t  14 -S  = 25. A t  t h i s  p o i n t  w e  have coset 25 i n  t w o  pre- 

v i o u s l y  d i s t i n c t  r o w s  i n  t h e  t a b l e  corresponding t o  S3 = E. 

Comparing t h e  rows w e  discover  t h a t  1 7 Z 2 4 ,  i .e. t h a t  

t h e  c o s e t s  represented  by t h e s e  two numbers a r e  r e a l l y  t h e  

24.S-l = 25 w e  deduce from 

-1 -1 4 2 

s a m e .  Next by comparing t h e  rows conta in ing  1 7  and 24 i n  

t h e  tables corresponding t o  R = E we  deduce t h a t  1 8 r 2 3 .  7 

A f u r t h e r  search .of  t h e  t a b l e s  quick ly  i n d i c a t e s  t h a t  no 

f u r t h e r  consequent ia l  coincidences r e s u l t ,  Thus w e  r e p l a c e  

24 by 1 7 ,  23 by 18, and 25 ( t h e  only c o s e t  def ined  af ter  

23 and 24) by 23 ( t h e  lowest vacated coset number) and 

e l i m i n a t e  t h e  rows which a r e  dup l i ca t ed ,  The r e s u l t i n g  

t a b l e s  a r e  then shown i n  f i g u r e  9: 
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Fig .  9--(2,3,7;4) after processing the f i r s t  coincidence 

. 
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W e  may then  proceed as before  t o  f i n i s h  t h e  enumeration. 

I t t u r n s  o u t  w i th  one scheme of d e f i n i t i o n s  ( t h a t  used by  

t h e  a u t h o r ' s  computer enumeration program) t h a t  27 cosets 

w i l l  have t o  be def ined  and then  a coincidence w i l l  reduce 

t h e  number t o  24 a t  which p o i n t  t he  tables close-up. Thus 

t h e  group (2,3,7;4) i s  of order 7-24 = 168 as expected. 

The order of def in ing  new cosets i s  completely immaterial  

t o  t h e  success  of an enumeration. H o w e v e r ,  by a j u d i c i a l  

sequence of d e f i n i t i o n s ,  t h e  number of coincidences may be 

minimized. Experience seems t o  i n d i c a t e  t h a t  many groups 

cannot  be enumerated without  t h e  occurrence of coincidences.  

As i n t e r e s t i n g  examples of t h i s  I refer t o  John Leech's 

r e c e n t  paper w h e r e  he cites p r i v a t e  correspondence w i t h  Todd 

sugges t ing  t h a t  two groups: K l e i n ' s  simple group of o rde r  

168 def ined  by: 

4 

or 

2 2 4  
B7 = (AB)2 = (A-1B)3 = (A B ) = E 

(10) 
-1 3 3 4 3  B7 = = (A B) = (A B ) = E 

and the previous ly  cited group, 

when enumerated as cosets of 

cannot  be enumerated without the  occurrence of coincidences.  

(8,7[2,3), def ined  by  (2), 

B] r e s p e c t i v e l y ,  

4John Leech. "Coset Enumeration on D i g i t a l  Computers, 'I 
Proceedinqs of t he  Cambr idqe  Philosophical Society,  L I X  
(1963), 285 



CHAPTER I11 

ENUMERATION BY MACHINE 

Introduction 

In 1957 Coxeter and Moser stated in the introduction 

to their book that the “method (for systematic enumeration) 

is sufficiently mechanical for the use of an electronic com- 

puter. ‘15 

written programs for various machines to accomplish this 

task. 

Since then several people have independently 

Leech gave a history of the work done on this problem 

that was known to him at the time of publication of his paper.6 

He gave an excellent description of the work of C. B. Hasel- 

grove and his own work. He then cited the work of R. Maddison 

and A. Sinkov. All of the above mentioned programs used 

basically the same logic and of these, the work of Sinkov is 

best known to the author of this paper. 

Description of Loqic Used by by Sinkov 

The first important way in which all of the computer 

programs differ from the hand method is in the elimination 

H. M. S. Coxeter and W. 0. T. Moser, Generators t 5 

Relations for Discrete Groups (Berlin: Springer-Verla 
1957), p. v. 

6 Leech, pp. 259-263 

-16- 
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of the t a b l e s  f o r  each r e l a t i o n .  In s t ead ,  t a b l e s  a r e  car- 

r i e d  only f o r  each genera tor  and i t s  inve r se .  This r e s u l t s  

i n  a cons ide rab le  saving of s t o r a g e  space and t h e r e f o r e  per-  

m i t s  a l a r g e r  group t o  be enumerated. The d e f i n i n g  r e l a -  

t i o n s  a r e  s t o r e d  i n  the  machine and the gene ra to r s  comprising 

t h e  r e l a t i o n s  a r e  fe tched a s  needed. 

Sinkov's  program e s s e n t i a l l y  a p p l i e s  each c o s e t  i n  t u r n  

0 t o  each of t h e  def in ing  r e l a t i o n s  i n  t u r n .  Assume t h a t  a 

i s  t h e  c u r r e n t  coset number, t h a t  m c o s e t s  have a l r eady  been 

def ined ,  and t h a t  f i  (Sl, S2,. . . , Sn) = RIRZ.. .Rf = 

c u r r e n t  d e f i n i n g  r e l a t i o n .  Then a R is  e x t r a c t e d  from the 

table f o r  t h e  genera tor  R , .  If anRl i s  def ined  e.g. a h R l  = a,, 

E is  the 

0 1  

then a R i s  1 2  

set  m + l ,  t he  

I V I  V I  I 

e x t r a c t e d  from the table and so on. I f  for some 

n o t  def ined,  it i s  immediately def ined  as co- 

appropr i a t e  e n t r i e s  are made i n  the tables, and 

the process ing  cont inues.  When t h e  end of t h e  r e l a t i o n  i s  

reached, a t e s t  i s  made t o  determine i f  a 

a coincidence has  been discovered.  

c idence  and a l l  consequent ia l  co inc idences  have been processed,  

the  c u r r e n t  c o s e t ,  a i s  app l i ed  i n  l i k e  manner t o  the nex t  

r e l a t i o n .  When the  c o s e t  a has  been app l i ed  t o  a l l  of the 

r e l a t i o n s ,  t h e  next  cose t  a +1 i s  app l i ed  t o  t h e  r e l a t i o n s  

i n  t u r n .  The process  is complete when the  l a s t  c o s e t  def ined  

has  been app l i ed  t o  a l l  of t h e  r e l a t i o n s ,  wi thout  caus ing  

any new d e f i n i t i o n s  t o  be introduced.  

. ~f a. # a 
0 = at 1' 

I f  a = a t  o r  i f  a coin-  0 

0' 

0 

0 



-18- 

When a coincidence, a t b ,  w i th  a c b ,  i s  discovered,  

- -  

- - -  

t h e  row corresponding t o  coset b i s  examined f o r  a l l  gene ra to r s  

and inve r ses .  I f  a given e n t r y ,  bRi ,  i s  undefined, no a c t i o n  

i s  necessary and t h e  next e n t r y  i s  examined. O t h e r w i s e  a 

tes t  i s  made t o  see i f  b R  = b and i f  t h a t  i s  t h e  c a s e ,  i t  

i s  replaced by a .  I f  b R .  # b, then t h e  inve r se  e n t r y  ( b R . ) R  

i 
-1 

1 i i  

i s  d e l e t e d  from the  t a b l e .  Next t h e  e n t r y  aR i s  examined. 
i 

I f  a R  i s  no t  def ined,  t h e  e n t r y  b R  i s  i n s e r t e d .  I f  aRi is 

def ined  and aR = b it i s  rep laced  by a .  Otherwise a new co- i 

incidence i s  se t  up between aR 
i 

i i 

and b R i .  Then a check i s  made 

-1 t o  determine i f  (aRi)  Ri i s  def ined  and i f  n o t ,  a i s  i n s e r t e d .  

F i n a l l y  t h e  e n t r i e s  i n  t h e  r o w  b a r e  d e l e t e d  (made z e r o ) .  

The l i s t  of coincidences awai t ing  processing i s  s o r t e d  

l ex icograph ica l ly  so t h a t  redundant information need no t  be 

s t o r e d  and a l so  t o  assure t h a t  no coincidence i s  processed 

on a row a l r eady  made zero.  

A f t e r  t h e  e n t i r e  l i s t  of coincidences has  been processed,  

it i s  d e s i r a b l e  for e f f i c i e n t  use of memory space t o  e l i m i n a t e  

t h e  vacated r o w s  f r o m  all t h e  tables. This i s  e a s i l y  done 

by us ing  t h e  coincidence r o u t i n e  t o  set up an a r t i f i c i a l  

coincidence between the f i r s t  empty r o w  and t h e  nex t  non- 

empty one. This process i s  repea ted  u n t i l  t h e  t a b l e s  a r e  

aga in  without  empty rows. 
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Descr ip t ion  of Loqic Used by Author 

The program w r i t t e n  by t h e  au thor  of t h i s  paper uses  

t h e  o t h e r  l o g i c  scheme presented i n  t h e  l i t e r a t u r e .  The 

method i s  e s s e n t i a l l y  t h a t  of H. Felsch7 al though t h e  program 

was w r i t t e n  independently. This method was a l s o  used by 

Bandler (see Leech's papere) a l though he d id  n o t  program 

f o r  automatic processing of coincidences.  

The a u t h o r ' s  program was o r i g i n a l l y  w r i t t e n  f o r  t h e  

IBM 1620, b u t  i n  t he  spr ing  of 1963 an  IBM 7090 was d e l i v e r e d  

t o  t h e  Computer Center of t h e  Univers i ty  of Maryland, so 

t h e  program was r e w r i t t e n  and modified using For t r an  I1 

f o r  t h e  7090. For t ran  I1 i s  a problem o r i e n t e d  programming 

language and hence a source l i s t i n g  of t h e  program (see 

Appendix) may be of i n t e re s t .  

Bas i ca l ly  t h e  procedure used i n  t h i s  program i s  a s  follows: 

The cosets a r e  appl ied  s e q u e n t i a l l y  t o  t h e  de f in ing  r e l a t i o n s  

i n  t u r n  a s  be fo re ;  however, when t h e  forward working i s  

h a l t e d  by an  undefined c o s e t ,  t h e  c u r r e n t  coset i s  then  

app l i ed  t o  the  inverse  of t h e  l a s t  gene ra to r  i n  t h e  r e l a t i o n .  

This backward working proceeds i n  a manner s i m i l a r  t o  t h e  

forward working and one of  t h r e e  t h i n g s  may happen. F i r s t ,  

H. Fe lsch  I' Programmierung d e r  R e s  tk lassenabzaehlung 
7 

e i n e r  Gruppe nach Untergruppen," Numerische Mathematik, I11 
(1961),  pp. 250-256 

*Leech, p.  262. 
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t h e  backward working may encounter an undefined coset i n  which 

case  a new c o s e t  i s  defined: second, t h e  backward working 

may j u s t  m e e t  t h e  forward working, i n  which case  new i n f o r -  

mation has  been deduced: or t h i r d ,  t h e  forward working and 

t h e  backward working may over lap ,  i n  which case  a coincidence 

i s  deduced. When a new c o s e t  i s  def ined o r  when new i n f o r -  

mation i s  deducedc e .g . ,  aR = b, every occurrence of t h e  
i 

-1 gene ra to r  R o r  i t s  inverse R i s  examined. The c o s e t  a i i 

i s  app l i ed  t o  t h e  word i n  which t h e  gene ra to r  R appeared 

s h i f t e d  c y c l i c a l y  t o  begin wi th  Ri. 

i n  t h e  g e n e r a l  working i s  used,  namely, upon reaching a 

i 

The same procedure a s  

gap i n  t h e  forward working, backward working i s  begun. How- 

e v e r ,  i f  a void i s  discovered a new d e f i n i t i o n  i s  n o t  made. 

New information discovered i n  t h i s  manner i s  en te red  i n t o  

t h e  m u l t i p l i c a t i o n  tables and s t o r e d  away f o r  f u t u r e  processing.  

Coincidences a r e  handled i n  t h e  same manner a s  i n  Sinkov's  pro- 

gram except  t h a t  provis ion i s  made t o  make any necessary 

changes t o  t h e  table of information awai t ing  process ing  t h a t  

might have occurred due t o  t h e  processing of subsequent 

coincidences.  

I n  Leech's paper he  s t a t e d ,  "NO d i rec t  comparison of 

running t i m e s  w i th  t h e  two methods i s  a v a i l a b l e  a t  p re sen t  

a s  t h e  machine speeds a r e  widely d i f f e r e n t :  t h i s  must w a i t  
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u n t i l  bo th  methods have been programmed f o r  t h e  same machine."9 

A p a r t i a l  answer t o  t h i s  ques t ion  is now a v a i l a b l e  s i n c e  

Sinkov's  problem was w r i t t e n  f o r  t h e  IBM 704 and i s  capable  

of  be ing  run on t h e  IBM 7090. The fol lowing c h a r t  f r o m  a 

r e p o r t  w r i t t e n  by Sinkov fo r  t h e  Computer Science Center a t  

t h e  Univers i ty  of Maryland i n  June  1963 shows a comparison 

of running t i m e s  on t h e  c l a s s i c a l  problem (8,7 2 , 3 ) .  The 

a u t h o r ' s  running t i m e  has been added. 
I 

TABLE I 

COMPARISON OF COMPUTER RUNNING TIMES 
ON THE GROUP ( 8 , 7 / 2 , 3 )  

Person Machine Cosets  Required T i m e  
~~ ~ ~~ ~~ ~ ~~ ~~ ~ 

Todd By hand 945 >30 hours 
Felsch Zeus 22  1300 - 2 hours 
Leech EDSAC 2 2000 42 m i n u t e s  
Sinkov IBM 7090 2176 5 m i n u t e s  
Leech KDF 9 2 min. 30 sec. 
Snive ly  I B M  7090 1747 l m i n .  36 sec. 

The f a s t e r  t i m e  obtained by t h e  a u t h o r ' s  program i s  n o t  

n e c e s s a r i l y  i n d i c a t i v e  of more e f f i c i e n t  l o g i c .  The a u t h o r ' s  

l o g i c  i s  cons iderably  more complicated and t h e r e f o r e  t a k e s  

up more s t o r a g e  space t h u s  l i m i t i n g  t h e  s i z e  of t h e  problem 

t h a t  may be handled wi th in  t h e  memory of t h e  machine. I n  

9Leech, p.  263 
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fact the author's program can enumerate lOOOO/n cosets 

where n is the number of generators of the group being 

enumerated. Running times are expected to vary widely 

from problem to problem. The Felsch logic would be better 

in a problem that involves a large number of excess cosets 

to be defined since relatively few excess cosets are de- 

fined by the author's scheme. 



CHAPTER IV 

TKE BURNSIDE PROBLEN 

In 1902 Burnside stated what is commonly called the 

Burnside problem: can the order of a group with a finite 

number of generators be infinite while the period of each 

element in the group is finite?1° To the author's knowledge, 

the problem remains unsolved, for although a Russian mathe- 

matician, Novikov, claimed to have answered it affirmatively, 

his proof has not yet been published. 

A more specialized problem may be stated simply: assume 

the groups under consideration are finitely generated and 
- -  - 

that the orders of every element in the group, are bounded. 

'n,r* Suppose, for example, S1, S2, ..., S 
and every element REB 

Then B 

generate a group, r 

satisfies the relation Rn = E. 
n,r 

is called the Burnside group of exponent n with 
n, r 

r generators. This Burnside problem now reduces to the 

question: which of the groups B are finite? n,r 

'OW. Burnside, "On an Unsettled Question in the Theory 
of Discontinuous Groups," Quarterly Journal of Pure and 
Applied Mathematics, =I11 (1902), p. 230-238 
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I n  h i s  book Marshal l  Hall  summarizes t h e  work done on 

t h i s  problem up t o  1959.11 Some i n t e r e s t i n g  r e s u l t s  a re :  

1. B i s  f i n i t e  ( f o r  f i n i t e  r), namely t h e  a b e l i a n  group 
2 , r  

of t h e  form: 

2 

r f a c t o r s  

c xc x...xc 2 2  

2. B i s  f i n i t e  and of order :  
3 , r  

r ( r2+5)  
6 3 

This r e s u l t  was obtained by Levi and van de r  Waerden. 1 2  

3. B i s  f i n i t e .  This r e s u l t  was obtained by Sanov.13 
4 , r  

i f  it i s  f i n i t e ,  has  order  a t  most 534 (see Kos t r ik in )14  
5 , 2  

4 .  B 

"M. Ha l l ,  The Theory of Groups. (New York: The 
MacMillan Company, 19591, pp. 320-338 

l2 I b i d . ,  p. 321 

l3 I b i d . ,  p. 324 

l4 I b i d . ,  p .  327 
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5 .  B i s  f i n i t e  and of order :  
6 , r  

b (b2+5) 
6 

2a3 

where : 

r (r2+5 
a = l + ( r - l ) 3  6 

and : 

b = 1 + ( r - 1 ) 2 r  

This r e s u l t  was obtained by M.  Hall.15 

Although t h e  o r d e r s  of t h e  groups 

of i r r e d u c i b l e  o r  n e a r l y  i r r e d u c i b l e  

B are known, sets 

d e f i n i n g  r e l a t i o n s  

3 , r  

a r e  n o t  known f o r  a l l  of t h e s e  groups.  

f i n d  such sets of def in ing  r e l a t i o n s ,  one f i n d s  a good 

a p p l i c a t i o n  f o r  computer enumeration. 

i s  t o  overdef ine  t h e  group, t h a t  is ,  t o  f i x  t h e  pe r iods  

of more elements of t h e  group than i s  necessary t o  de- 

f i n e  t h e  group. 

t hus  determined ( i f  n o t  a l ready  known) t h e  enumeration 

i s  r e run  wi th  some of the r e l a t i o n s  removed. 

of t h e  same o rde r  r e s u l t s ,  t h e  r e l a t i o n s  removed w e r e  re- 

dundant, i . e . ,  an a lgeb ra i c  consequence of t h e  remaining 

r e l a t i o n s .  By proceeding i n  t h i s  manner, a non-redundant 

I n  a t tempt ing  t o  

The technique used 

Then when t h e  o rde r  of t h e  group i s  

I f  a group 

l5 I b i d . ,  p.  336-337 
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set of relations may be obtained. 

r -  

- -  

B is, of course, the cyclic group of order 3 satis- 
3 , 1  

fying the relation: 

of order 27,  satisfies the following set of relations: 
B3,2 '  

(15 1 3 3 3 -1 3 A = B = (AB) = (A B)  = E 

In his 1963 paper, Leech gave his results for the group 

He obtained his results by enumerating the 81 co- 16 
B3,3 '  

sets of A , B  which is B of order 27.  One of the resulting 
3 , 2  

definitions is: 

(A-1C)3 = (B -1 C)  3 = (ABC)3 = (A-1BC)3 = (AB -1 C )  3 - - 

-1 3 (ABC ) = E 

His enumeration was performed on EDSAC 2 .  

was not large enough to permit the enumeration of B This 

is the problem solved by the author on the IBM 7090. 

The memory of EDSAC 2 

3 , 4 '  

In approaching the problem of B with generators 
3 , 4  

A , B , C , D  the first step was to consider the generators in all 

combinations of three and assure that they satisfy the relations 

( 1 4 ) .  When this is done, we are assured that all words con- 

taining only three of the four generators are of exponent 3. 

16Leech, p. 264 
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To accomplish t h i s ,  it w a s  s u f f i c i e n t  t o  s p e c i f y  t h e  pe r iods  

of 32 e lements ,  These a r e :  

3 3 3 3 A = B  = C  = D  = E  

3 3 3 3 (AB)3 = (AC)3 = (AD) = (BC) = (BD) = (CD) = E 

(A-1B)3 = (A C) = (A-1D)3 = (B-lCl3 = (B D) = (C D) = E -1 3 -1 3 -1 3 

(17) 
3 -1 -1 3 -1 3 (ABC) = (A BC)3 = (AB C) = (ABC 1 = E 

3 -1 -1 3 -1 3 (ACD) = (A CD)3 = (AC D) = (ACD ) = E 

'2R 53R where (i = 1,2,...,6) and R2 3 4 
L e t  W = R1 

i j  

Y2 = (-l,l,l,l) 

= (l,-l,l,l) 

= (1,1,-1,1) 

y3 

y4 

and 

Wll = ABCD 

W21 = ABDC 

W31 = ACBD 

= (l,l,l,-l) 

= (-1, -1,1,1) 

= (-l,l,-l,l) 

= (-l,l,l,-l) 

y5 

y7 
(18) 

'6 

'8 

W41 = ACDB 

WEjl = ACBC (19) 

W61 = ADCB 

It is r e a d i l y  v e r i f i e d  t h a t  i f  A,B,C, and D s a t i s f y  r e l a t i o n s  

(17) and 
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that all words of four letters have period 3, A computer 

- enumeration using relations (17)  and (20)  of cosets of B - 
3,3 

3,4' 
1 4  @,B,C) gave a group of order 3 

A later series of enumerations proved that it is only necessary 

for i to assume 3 values in (20)  in order for (17)  and (20)  

to define B although not all choices of 3 values for i 

, the known order of B 

3,4 

were successful, Those which were successful are: 

The next experiment tried was to hold i fixed at i = 1,2,3 

and vary the values permitted to j, The following sets of 

defining relations were thereby obtained for B 3 '4 :  

Relations (17)  and 

= E, (i=1,2,3) 
3 

ij W 

I 
(J  = 1 , 2 , a 0 m , 8 )  

( j  = 2,3,,..,8) 

( j  = 3,4,,.,,8) 

( j  = 4,5,,..,8) 

(J  = 5,6,.,.,8) 

No. of words 
56 

53 

50  

4 7  

44 

41  

38 

35 

35 
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Since  an enumeration of r e l a t i o n s  (17)  a lone  f a i l e d  t o  g i v e  

c l o s u r e  b e f o r e  memory capac i ty  was exceeded it is q u i t e  

l i k e l y  t h a t  t h e  l a s t  e i g h t  success fu l  sets of d e f i n i n g  

r e l a t i o n s  i n  ( 2 2 )  a r e  i r r e d u c i b l e ,  A complete proof of 

t h e  l a s t  s ta tement  by enumerations would r e q u i r e  35 

enumerations f o r  each d e f i n i t i o n  o r  about 72 hours of 7090 

computer t i m e .  



CHAPTER V 

OUTLOOK FOR THE FUTURE 

- -  

The obvious next  s t e p  would be t o  a t tempt  t o  determine 

a set  of de f in ing  r e l a t i o n s  for  B This ,  however, is a 

problem which f a r  exceeds the  c a p a b i l i t y  of t h e  7090 s i n c e  

B 

3 ,5 '  

i s  of order 325 and the  l a r g e s t  subgroup a v a i l a b l e  f o r  
3 # 5  

14 
an  enumeration 1 s  3 of order  3 which would r e q u i r e  

a t o t a l  of 3 c o s e t s  t o  be de f ined ;  Since t h e r e  a r e  t a b l e s  

304 
11 

for  each gene ra to r  and i t s  inverse, a t o t a l  of 10  t a b l e s ,  

t h i s  means t h a t  a t o t a l  of 1 ,771,470 t a b l e  e n t r i e s  m u s t  be 

provided. Even packing t w o  en t r i e s  t o  a word (3 2 ) 
11 18 

only  65,536 e n t r i e s  can be provided, n o t  a l lowing room f o r  

t h e  program and o t h e r  t a b l e s -  

A means of extending t h e  program's c a p a b i l i t i e s  would 

be t o  store t h e  t a b l e s  on magnetic t ape  and c a l l  them i n t o  

memory a s  needed; however, t h i s  is very imprac t i ca l  because 

such ope ra t ions  a r e  q u i t e  t i m e  consuming and l a r g e  amounts 

of computer t i m e  a r e  n o t  r e a d i l y  a v a i l a b l e .  

Another p o s s i b i l i t y  for  so lv ing  t h i s  problem i s  a d i s k  

s t o r a g e  s i m i l a r  t o  t h e  IBM 1301, b u t  un fo r tuna te ly  t h i s  w a s  

n o t  a v a i l a b l e  t o  t h e  au tho r ,  

However, t h e  work on B d id  permit  a con jec tu re .  

Given t h e  d e f i n i t i o n  f o r  group B i t  seems l i k e l y  t h a t  i n  

a d d i t i o n  t o  t h e  combinations of r e l a t i o n s  needed t o  d e f i n e  

304 

3 # n P  

-30- 
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n + l n  
a s  a subgroup of B i n  .+ ways it i s  only  3 ,  n + l  B 

3 , n  

necessary t o  add a po r t ion  of t h e  words of n + 1 le t te rs  

3 ,n+l '  t o  completely d e f i n e  B 

5,2; Another i n t e r e s t i n g  ques t ion  is t h e  s tudy of B 

however, t h e  l a r g e s t  r e a d i l y  known subgroup a v a i l a b l e  i s  

B 
5 , 1  

of B 

= C 5 I  t h e  c y c l i c  group of o rde r  5 ,  Even i f  t h e  o rde r  

w e r e  as l o w  as 5'' one would pave t o  enumerate 
582 

9 5 = 1,953,125 c o s e t s ,  a t a sk  which i s  w e l l  beyond t h e  

c a p a b i l i t y  of t h e  7090 without an extremely l a r g e  random 

access s t o r a g e ,  

I n  t h e  f u t u r e  one may expect computers t o  become 

faster and t o  have l a r g e r  m e m o r i e s .  A t  t h e  c u r r e n t  machine 

speed a memory of 5,000,000 IBM 7090 words would enable  

the a u t h o r ' s  program t o  undertake t k e  problem of B and 

poss ib ly  B 

would be p r o h i b i t i v e ,  With a hur,dred fo ld  inc rease  i n  pro- 

315 

however, t h e  t i m e  requi red  t o  run t h e s e  problems 
5,2*  

c e s s i n g  speed t h e s e  two problems would be w e l l  w i t h i n  t h e  

range of machine enumeration, 
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COSET ENUMERATION PROGRAM 
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q------ 
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